Output Effect Evaluation Based on Input Features in Neural Incremental Attribute Learning for Better Classification Performance

نویسندگان

  • Ting Wang
  • Steven Guan
  • Ka Lok Man
  • Jong Hyuk Park
  • Hui-Huang Hsu
چکیده

Machine learning is a very important approach to pattern classification. This paper provides a better insight into Incremental Attribute Learning (IAL) with further analysis as to why it can exhibit better performance than conventional batch training. IAL is a novel supervised machine learning strategy, which gradually trains features in one or more chunks. Previous research showed that IAL can obtain lower classification error rates than a conventional batch training approach. Yet the reason for that is still not very clear. In this study, the feasibility of IAL is verified by mathematical approaches. Moreover, experimental results derived by IAL neural networks on benchmarks also confirm the mathematical validation. OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

The Effect of Input, Input-output andOutput-input Modes of Teaching on Vocabulary Learning of Iranian EFL Learners

This study was designed to find which one of the three different presentations, i.e. input, input-output, and output-input, will be more effective in Iranian EFL learners' vocabulary acquisitions. To this end, first 54 out of 64 female students, aged from 19 to 23 years, with an average of 21, were selected out of starter-level EFL learners at the University of Tarbiat Moalem in Bandar Abbas, I...

متن کامل

Neural Incremental Attribute Learning in Groups

Incremental Attribute Learning (IAL) is a feasible approach for solving high-dimensional pattern recognition problems. It gradually trains features one by one. Previous research indicated that supervised machine learning with input attribute ordering can improve classification results. Moreover, input space partitioning can also effectively reduce the interference among features. This study pro...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Symmetry

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015